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Abstract. We present theoretical investigations via the replica theory of the storage capacities
of committee machines with a large numberM of hidden units and spherical weights. Difficulties
arise in the solution of this problem in the limit of largeM. In the case of overlapping receptive
fields, as the number of patterns increases, both permutation symmetry and replica symmetry are
broken, which leads to the appearance of many order parameters and causes additional difficulty.
We observe that the relations among these order parameters yield a set of quantities which are
small in the limit of largeM, making the asymptotic calculation tractable. Using the one-step
replica symmetry breaking scheme, we compute the asymptotic valueαc of the storage capacity
per input unit in the limit of largeM. We find thatαc ' (8

√
2/(π−2))M

√
lnM. The shift to the

case of non-overlapping receptive fields can be made easily; we then findαc ' (8
√

2/π)
√

lnM.
Both values satisfy the bound of Mitchison and Durbin.

1. Introduction

Statistical mechanics has been a useful tool for the study of neural networks since it
was successfully applied to the Hopfield model [1]. From the perspective of statistical
mechanics, a neural network can be regarded as a thermodynamic system of quenched
disorder. Many ideas and methods developed in studies of random systems, particularly
spin glasses, have been used extensively to study neural networks. The replica theory [2, 3]
is a useful method which has proven to be invaluable in theoretical approaches. Gardner
developed the statistical mechanics formalism via replica theory for the storage capacities
of feedforward neural networks,perceptrons[4]. She reproduced the storage capacity of a
single-layer perceptron with continuous weights which Cover had obtained using geometrical
arguments [5]. Later, Krauth and Ḿezard calculated the storage capacity of a single-layer
perceptron with binary weights [6]. Exploiting Gardner’s idea, Sompolinsky, Tishby and
Seung studied generalization in learning from examples, and obtained interesting results for
a single-layer perceptron [7].

There have also been theoretical studies on the storage capacities of more complicated
networks, in particular, the committee machine and the parity machine. Barkai, Hansel and
Kanter obtained the storage capacity of a parity machine with non-overlapping receptive
fields (NRF) in the case of spherical weights [8]. Their value is exact within the one-step
replica symmetry breaking (1RSB) scheme, and satisfies the mathematical bound obtained
by Mitchison and Durbin [9]. This bound is derived using a method similar to that of
Cover and is generally applicable to both machines. Later Barkaiet al [10] and Engel
et al [11] made extensive progress on committee machines. They first pointed out that the
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breaking of the symmetry in permuting hidden units, called permutation symmetry breaking
(PSB), plays an important role for the machine with overlapping receptive fields (ORF).
Their results seemed reasonable for a finite number of hidden units. For a large number
of hidden units, however, their replica symmetric (RS) calculation, obtained only for the
NRF case, violated the Mitchison–Durbin bound. They supposed that the 1RSB calculation
would give a more accurate estimate of the storage capacity.

Our group [12, 13] and Schwarzeet al [14] have devoted much effort to the study of
generalization in learning from examples in the ORF committee machine. We found a
novel first-order phase transition, driven by PSB, from the poor-learning phase to the good-
learning phase. Overlaps between different hidden units were found to make non-negligible
and important contributions. By deriving relations among order parameters, including the
overlaps between different hidden units, we were able to calculate the generalization curve
for a large number of hidden units. Unlike the case of storage capacity, the RS calculation
was satisfactory for the generalization, as confirmed by the Monte Carlo simulation in the
case of binary weights.

In this paper we extend our method, used in the studies of the generalization of the
ORF committee machine, to the study of the storage capacity of the same machine. It is
easy to shift to the NRF case, so that we can obtain storage capacities in both cases. We
resolve the difficulty of the largeM limit, a major reason why this problem has not been
solved previously.

In this paper, most of the equations and discussions are given with regards to the ORF
machine, and we simply shift to the NRF case at the end of the calculations. Our calculations
are carried out within the 1RSB scheme, which seems to be, so far, the best tool available
from the replica theory. In section 2 the statistical mechanics formalism, based on the
Gardner method, is developed, and various order parameters are introduced. Section 3 is
based on analysis in the regime where the number of patterns per input unit is of order
M, far below the storage capacity. We discuss the physical implication of the breaking
of permutation symmetry and replica symmetry. We derive relations among many order
parameters that greatly reduce the technical difficulty. From these relations we can infer
the asymptotic behaviour of many order parameters near the storage capacity. In section 4
we investigate the asymptotic behaviour of the order parameters near the storage capacity
in the largeM limit. We find the valueαc of the storage capacity per input unit. The
result is found to satisfy the Mitchison–Durbin bound. In section 5 we discuss our results
and related works in progress. In the appendix we present more technical details of the
asymptotic calculation in section 4.

2. Statistical mechanics formalism

Consider a double layer committee machine withN input units,M hidden units and one
output unit. The committee machine has the weight between every hidden unit and the
output unit equal to one. LetWji be the weight between input uniti and hidden unitj ,
and letξµi for µ = 1, . . . , P be input variables on input unitsi. We choose the Boolean
transfer function on the hidden units. Then the network produces an output value

oµ = sgn

(
M−1/2

M∑
j=1

sgn(hj )

)
. (1)

In this equation the local receptive fieldshj on hidden unitsj is given byN ′−1/2∑
i=1Wjiξ

µ

i .
Here the summation overi depends on the architecture of the machine. In a fully connected
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machine, all thei are swept andN ′ = N . In this case thehj are called overlapping. In a
tree-structure machine, input units are equally divided intoM subgroups each of which is
connected to one of hidden units, soN ′ = N/M. In this machine thei do not overlap for
different js and thehj are called non overlapping.

A patternµ is encoded by a numberσµ ∈ {−1, 1} at the output via an input–output
mapping{ξµi } → σµ. A patternµ is stored in the machine when weights can yield the
correct output, that is,oµ = σµ. The storage capacity is then defined as the maximum
numberPc of input–output mappings that can be stored reliably in the machine. The
volumeV in the weight space in which weights correctly produceP input–output mappings,
originally considered by Gardner, can be found from the partition function

Z = Tr{Wji } exp

(
− β

P∑
µ=1

2(−σµoµ)
)

(2)

where2(x) is the Heaviside step function. As the inverse temperatureβ ≡ 1/T goes to
∞, Z recovers the Gardner volumeV . The trace is taken over continuous weights with a
spherical constraint:

∑
i W

2
ji = N ′ and

∑
j W

2
ji = M. WhenP reaches the storage capacity,

lnV goes to−∞. One can observe that the ORF machine and also the NRF machine, can
store patterns safely forP ∝ N in the limit of largeN . Let us writeP = αN andPc = αcN .
Then we expectαc� O(1).

The ξµi are drawn at random over a distribution with variance one, that is,〈〈ξµi ξ νj 〉〉 =
δµνδij , where the double-bracket denotes the average over theξ

µ

i . Theσµ are also drawn
at random from{−1, 1}. The network is now regarded as a thermodynamic system with
the energy

∑P
µ=12(−σµoµ) and the quenched disorder given by a random selection of

the ξµi and theσµ. The average of lnZ over the quenched disorder can be performed
using the replica theory. In the disorder average, we can putσµ = 1 without loss of
generality by changingσµξµi → ξ

µ

i . Then, the replica theory yields the disorder average
〈〈lnZ〉〉 = n−1 ln〈〈Zn〉〉 in the n→ 0 limit.

We can now write the replicated partition function

〈〈Zn〉〉 = Tr{Wji } exp[PGr ]. (3)

HereGr is given by

eGr =
∫ ∏

σ

duσ dûσ

2π

∫ ∏
j,σ

dxσj dx̂σj
2π

exp

[
− β

∑
σ

2(−uσ )+ i
∑
σ

ûσ uσ

+i
∑
j,σ

x̂σj x
σ
j −

1

2

∑
j,j ′,σ,ρ

x̂σj x̂
ρ

j ′Qjσ,j ′ρ −
i√
M

∑
σ,j

ûσsgn(xσj )

]
(4)

whereσ , ρ are replica indices. The matrixQjσ,j ′ρ is defined by

Qjσ,j ′ρ = 1

N

N∑
i=1

Wσ
jiW

ρ

j ′i . (5)

One can carry out the integrations over thexσj by using the cumulant expansion in the limit
of largeM. Up to the zeroth order in 1/M, (4) leads to

eGr =
∫ ∏

σ

duσ dûσ

2π
exp

[
− β

∑
σ

2(−uσ )+ i
∑
σ

ûσ uσ − 1

2

∑
σ,ρ

ûσ ûρ
1

M

×
∑
j,j ′

2

π
sin−1(Qjσ,j ′ρ)

]
. (6)
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This equation turns out to be valid asα goes up toO(M). This will be examined in the
next section and some useful information will be given. However, near the storage capacity
whereα/M � O(1), this cumulant expansion does not work. A more accurate method is
required to estimateαc.

The thermal average of the matrixQjσ,j ′ρ gives rise to the order parameters, which
are averaged overlaps among hidden units and replicas. One can write〈〈Zn〉〉 as a
multiple integral where integration variables areQjσ,j ′ρ and their conjugate variables
Q̂jσ,j ′ρ , which are introduced in inserting delta functions associated with (5), that is,
δ(Qjσ,j ′ρ − N−1∑

i W
σ
jiW

ρ

j ′i ). The integral can be computed by the saddle-point method
in the limit of largeN . The values ofQjσ,j ′ρ at the saddle point are identical with the
corresponding order parameters. There are three classes of order parameters given by

Qσ = 1

N

∑
i

〈〈〈Wσ
jiW

σ
j ′i〉T〉〉 for j 6= j ′ (7)

pσρ = 1

N

∑
i

〈〈〈Wσ
jiW

ρ

j ′i〉T〉〉 for j 6= j ′ σ 6= ρ (8)

qσρ = 1

N

∑
i

∑
j

〈〈〈Wσ
jiW

ρ

ji〉T〉〉 for σ 6= ρ (9)

where 〈· · ·〉T denotes the thermal average. We assume that the order parameters are
independent of indices of hidden units. Overlaps,Qσ andpσρ , between different hidden
units are found to be of order 1/M. Nevertheless, they make crucial contributions through
rescaling

Q̄σ = (M − 1)Qσ p̄σρ = (M − 1)pσρ. (10)

Using the relation〈〈Zn〉〉 = exp(−nβF), we can write the free energyF as

−nβ F
N
= G0(Q̄

σ , p̄σρ, qσρ, Q̂σ , p̂σρ, q̂σρ)+ αGr (Q̄σ , p̄σρ, qσρ). (11)

The saddle-point condition is obtained from the stationary condition of the free energyF

with respect toQ̄σ , p̄σρ , qσρ and their conjugate order parametersQ̂σ , p̂σρ , q̂σρ . The
order parameters can be determined by solving the saddle-point equations. One can then
find α = αc at whichq1 = 1, that is, weights composing the Gardner volume collapse to a
single point in the weight space.

3. Symmetry breaking and order parameters

As the number of patterns increases, the volume of theallowedregion in the weight space,
where weights correctly produce the desired input–output mappings, decreases. The output,
therefore the energy, of the ORF machine is invariant under the permutation of hidden
units. This property is called permutation symmetry (PS). In the PS phase, specialization in
hidden units does not occur, that is, the weights that can be transformed by the permutation
of hidden units are sited in a single allowed region. As a result, the overlappσρ between
different hidden units and the self-overlapqσρ are not distinguishable. Therefore we expect
qσρ = pσρ = 0 in the leading order. Note thatpσρ is alwaysO(1/M).

As α increases, PS becomes broken. In this situation, the allowed region of correct
pattern in the weight space is decomposed into many islands. Weights that can be
transformed by permutation of hidden units are not sited in the same islands. In this
case, specialization in hidden units takes place, which leads to the increase of self-overlap,
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that is,qσρ > 0. This characterizes the PSB phase. There should be a phase transition at a
certainα from the PS phase to the PSB phase.

Another source of the decomposition of the weight space is replica symmetry breaking
(RSB). PSB is unique to the ORF machine, but RSB is a more general phenomenon.
If further segmentation within each of the islands separated by PSB is possible, RSB is
diagnostic to it. For the generalization of the ORF machine, a similar phase transition
driven by the PSB is observed, but the PSB phase is found to preserve RS, as confirmed
by the Monte Carlo simulation [13]. This difference might be explained by the argument
that for the generalization, the presence of a target network, as a particular attractor in the
weight space, strongly drives the machine into a specific island. The situation is less clear
for continuous weights, where no Monte Carlo simulation has been carried out.

The above scenario can be confirmed by investigating in detail the behaviour of order
parameters. Interesting properties are observed forO(α) > M. Let α′ be α/M. In this
regime ofα we can find the free energy up to the leading order

−nβ F

NM
= −1

2

∑
σ

(1+ Q̄σ )Q̂σ − 1

2

∑
σ,ρ

′
(qσρ + p̄σρ)p̂σρ − 1

2

∑
σ,ρ

′
qσρq̂σρ

+ ln Tr{Wσ } exp

[
1

2

∑
σ,ρ

′
q̂σρWσWρ

]
+α′ ln

∫ ∏
σ

dxσ dx̂σ

2π
exp

[
− β

∑
σ

2(−xσ )+ i
∑
σ

x̂σ xσ

−1

2

∑
σ

(1+ 2πQ̄σ )(x̂σ )2− 1

2

∑
σ,ρ

′
(

2

π
sin−1 qσρ + 2

π
p̄σρ

)
x̂σ x̂ρ

]
(12)

where
∑′ denotes the summation excluding the same indices. This equation holds for both

binary and spherical weights. In fact, for spherical weights, we can eliminate the hatted
order parameters and findG0 exactly, defined in equation (11), which is given in the next
section. Some results in the following also hold independent of weights, and can be used
in the study of binary weights, so we keep this rather general expression.

The hatted order parameters appear only inG0. Then two saddle-point equations can be
obtained from vanishing derivatives ofG0 with respect toQ̂σ and p̂σρ

1+ Q̄σ = 0 (13)

qσρ + p̄σρ = 0. (14)

Strictly speaking, these are correct up to the zeroth order in 1/M and corrections could be
obtained by examining the neglected term ofO(M−1 lnM). This result is interesting in that
it is independent of the RSB scheme and the nature of the weights.

We now apply the 1RSB scheme for the order parameters. We write the corresponding
relations to (13) and (14)

1+ Q̄ = 0 (15)

q1+ p̄1 = 0 (16)

q0+ p̄0 = 0 (17)

whereq1, p̄1 are elements in diagonal blocks andq0, p̄0 are elements in off-diagonal blocks
of the 1RSB order parameter matrices,qσρ andp̄σρ . Also, Q̄σ is assumed to be independent
of the replica, equal toQ̄.
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Let G0 beG0/n andGr beGr/n. G0 depends on the nature of weights. For spherical
weights we find

G0

M
= 1

2
− 1−m

2m
ln(1− q1)+ 1

2m
ln(1− q1+m(q1− q0))+ q0

2(1− q1+m(q1− q0))
.

(18)

As well as the hatted order parameters, the overlaps between different hidden units are
eliminated using (15)–(17).

We can findGr , which is common to binary and spherical weights, as

Gr = ln(1− e−β)+ 1

m

∫
Dt0 ln

∫
Dt1[H(a0t0+ a1t1)+ (eβ − 1)−1]m

a0 =
[

(2/π)(sin−1 q0− q0)

1− (2/π)− (2/π)(sin−1 q1− q1)

]− 1
2

a1 =
[
(2/π)(sin−1 q1− q1− sin−1 q0+ q0)

1− (2/π)− (2/π)(sin−1 q1− q1)

]− 1
2

(19)

where we useDt = (dt/√2π) e−t
2/2 andH(t) = ∫∞

t
Dx. m is the size of diagonal blocks

of then× n 1RSB order parameter matrices. It goes to a value in [0, 1] in the limit n→ 0
and gains the physical meaning of the probability of having overlap equal toq0. The order
parameters of overlaps between different hidden units are also eliminated. Now the free
energy becomes a function ofq1 andq0.

There is a simple solution,q1 = q0 = 0. One can see that both PS and RS hold, so
that it is the solution for the PS phase. The PSB solution is supposed to have non-zero
q1. Note thatq0 appears in the form of sin−1 q0 − q0. Then we find thatq0 = 0 is always
possible, so a PSB solution hasq1 > 0 andq0 = 0. RS is broken in this solution. There is
another PSB solution whereq1 > q0 > 0. This solution is only possible for relatively large
α′, compared to the former PSB solution.

A phase transition takes place atα′ = α′1 from the PS phase withq1 = q0 = 0 to the
PSB phase withq1 > 0 andq0 = 0. We can see that PSB and RSB occur simultaneously.
The second phase transition from this PSB phase to another PSB phase withq1 > q0 > 0
occurs atα′ = α′2. Recently Urbanczik foundα′1 ' 4.91 andα′2 ' 15.4 [15]. The machine
reaches its maximal storage capability in the last PSB phase. In this phase bothq1 andq0

go to one for largeα′. One might think that the solution recovers RS; however, we find

1− q1 ∼ m2

α′8
1− q0 ∼ 1

α′2
− lnm ∼ 1

α′2
(20)

as α′ → ∞. We can observe 1− q0 � 1 − q1, showing the difference from the RS
solution. However, this only impliesα′c → ∞. We need a more accurate method to find
the dependence ofα′c onM in the limit of largeM.

4. Asymptotic calculation of storage capacities

As α′ gets close toα′c, 1− q1 and 1− q0 become very small. As seen in (15)–(17), other
small quantities include 1+ Q̄, q1+ p̄1, andq0+ p̄0, but they are found to vanish only in
the leading order. Fortunately, we only need to deal with small quantities, which makes the
following asymptotic calculation tractable. It is possible to estimateαc in the limit of large
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M by investigating the asymptotic behaviour of these small quantities. For convenience we
use the following notations:

w = 1+ Q̄− q1− p̄1 (21)

v1 = q1+ p̄1 (22)

v0 = q0+ p̄0 (23)

with w′ = w/M, v′1 = v1/M, and v′0 = v0/M. Avoiding the cumulant expansion, we
integrate overuσ and ûσ in (4) and obtain

mGr =
∫
Dz0

∫ ∏
j

Dt0j ln

[ ∑
{ηj=±1}

∫
Dz1

∫ ∞
0

∏
j

Dt1jA
m

]

A =
∑
{τj=±1}

2

(∑
j

τj

)∫
Du

∏
j

H

[ [
q1− q0− (v′1− v′0)

1− q1− w′
] 1

2

τjηj (t1j + sj )

+
[

1− q1− w
1− q1− w′

] 1
2 i√

M
uτj

]
sj =

[
q1− q0− (v1− v0)

q1− q0− (v′1− v′0)
] 1

2 i√
M
ηjz1+

[
q0− v′0

q1− q0− (v′1− v′0)
] 1

2

ηj t0j

+
[

q0− v0

q1− q0− (v′1− v′0)
] 1

2 i√
M
ηjz0. (24)

As α goes toαc, we assume the following scaling

1− q1− w′ = m

c
w = m

d
(25)

with m→ 0, 1/c→ 0, 1/d → 0. A similar scaling forq1, 1− q1 = m/c, was used in the
previous study of the storage capacity of the NRF parity machine [8]. We can shift to the
case of the NRF machine by simply settingv1 = v0 = 0, erasing the integrations overz1

andz0, and replacingα′ by α. We also assume the form 1− q1 = m/c in the NRF case.
G0 can be found exactly in the case of spherical weights, and is given by

2m
G0

M
= ln(1+ c(1− q0− (v′1− v′0)))+

1

M
ln(1+ d(v1− v0))

+ c(q0− v′0)
1+ c(1− q0− (v′1− v′0))

+ dv0

M(1+ d(v1− v0))
. (26)

In the limit of largec we expandGr as

mGr = f (0) + f (1) (27)

wheref (0) andf (1) are of the zeroth and the first order, respectively, in 1/
√
c. Technical

steps for the computation off (0) andf (1) are presented in detail in the appendix, and the
resultant forms are given in (A17) and (A24).

Then we keep only terms relevant for saddle-point equations inf (0) andf (1). We use
H(x)→ (

√
2πx)−1 e−x

2/2 for largex. From (A17), we find

f (0) ' −1

4

(2/π) sin−1(Q′0/(1+Q′0))− (2/π)(Q0/(1+Q′0))
1− (2/π) sin−1(Q′0/(1+Q′0))− (2/π)(W 2/(1+Q′0))

(28)
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whereQ′0, Q0 andW are given in equations (A2)–(A4). Inf (1), we can keep only terms
relevant for saddle-point equations forc andd. From equation (A24), we find

f (1) '
√
M(1− (2/π))

2π

√
1+ (c/Md)

c

1

1− (2/π) sin−1(Q′0/(1+Q′0))
. (29)

Now the free energy is given by

− βF
MN

= G0

M
+ α

′

m
(f (0) + f (1)). (30)

The five saddle-point equations are obtained from the stationary condition ofF with respect
to c, d, 1− q0− (v′1− v′0), v1− v0 andv0.

Solving the saddle-point equations, we find the following result:

c ' (π − 2)3

2048
Mα′4 (31)

d ' c (32)

v1− v0 = q1+ p̄1− q0− p̄0 ' 32

π − 2

1

Mα′2
(33)

v0 = q0+ p̄0 ' π − 2

Mα′
(34)

1− q0− (v′1− v′0) =
128

(π − 2)2
1

α′2
. (35)

An additional equation comes from the condition that∂F/∂m = 0 asm→ 0. This yields
−mβF/MN → 0, then we have

0' ln(1+ c(1− q0− (v′1− v′0))+
1

1− q0− (v′1− v′0)
− α′π − 2

4
√

2

1√
1− q0− (v′1− v′0)

.

(36)

This gives the asymptotic valueαc of the storage capacity per input unit

αc ' 8
√

2

π − 2
M
√

lnM. (37)

The shift to the NRF case can be made easily by replacingπ − 2 by π andα′ by α in
the above result. Therefore we have:

c ' π3

2048
Mα4 (38)

1− q0 ' 128

π2

1

α2
(39)

αc ' 8
√

2

π

√
lnM. (40)

The storage capacities per weight are given byαc/M from (37) for the ORF machine, and
by αc in (40) for the NRF machine. These values are smaller than the mathematical bound
∼ lnM obtained by Mitchison and Durbin.
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5. Discussion

Despite their almost identical values of storage capacity per weight, the weight space
structures are quite different in the two machines. For the ORF machine there are three
phases with two transitions. Forα′ < α′1, there is the PS phase with the RS solution. For
α′1 < α′ < α′2, there is the PSB phase with RSB solution whereq1 > q0 = 0. Forα′ > α′2
there is another PSB phase, with a different RSB solution whereq1 > q0 > 0. In this last
phase the number of patterns reaches its maximal value, that is, the storage capacity. On
the other hand, for the NRF machine there is only one phase transition, from the RS phase
to the RSB phase.

In a usual spin-glass phase,q0 becomes smaller asq1 gets closer to one; this means that
the distance between islands or valleys becomes greater as the volume of each island shrinks.
In this study we find that bothq1 andq0 go to one, althoughq1 approaches one much faster,
and this property is common to both machines. We might give a partial explanation for
this rather unusual phenomenon by supposing the following landscape picture in the weight
space. Let us imagine a group of islands in the weight space. As each island shrinks,
the distances between islands also decrease. This is possible when the overall boundary
surrounding the islands is contracting.

Monasson and Zecchina (MZ) proposed an interesting formalism [16] different from
the conventional Gardner method, which can analyse the weight space structure and the
internal representations. From the RS calculation, they reproduced the known result for
the NRF parity machine [8] and obtained a new result for the NRF committee machine.
For the parity machine, they showed that the RS solution is marginally stable in the limit
of infinite M [17], while it is unstable for a finiteM where the 1RSB solution appears.
They expected that the RS solution in their approach becomes exact asymptotically asM

grows. This new approach is fascinating in that it only relies on the relatively simple RS
calculation, compared to the complicated RSB calculation in the conventional approach as
carried out in this paper. It also seems to take into account the disconnected structure of
the weight space in the RS ansatz, which was seen in the numerical simulations on binary
parity machine [18]. An interesting variant from the weight space to the coupling (output)
space was made for the combined theory of the Vapnik–Chervonenkis dimension and the
storage capacity [19].

However, we find a little discrepancy of our results with what they found. Their value
of αc is larger by a factor

√
2, i.e. αc ' (16/π)

√
lnM, than that in (40). Recently, we

have applied the MZ approach to the ORF committee machine [20]. We have recently been
informed that an equivalent work was also done independently by Urbanczik [21]. The
result,αc ' (16/(π − 2))M

√
lnM, also shows the same difference of the factor

√
2 with

that in (37). At the present stage, the reason for this discrepancy is not clear since the two
approaches have different formalisms. From the point of view of the Gardner approach,
though the 1RSB solution is found where the RS solution is incorrect, it may not be exact.
The stability test of the 1RSB solution or the pursuit of a higher-step RSB solution would be
a very complicated task and has not been accomplished in our cases. The 1RSB calculation
itself has been incomplete until our results. On the other hand, the RS solution in the MZ
approach was found to be marginally stable for infiniteM, though only shown explicitly
for the NRF parity machine. It would be interesting to check whether the RSB solution that
appears for finiteM still exists asM increases.

We expect that the ORF committee machine with binary weights can also be studied.
It can be observedαc ∼ O(M). The result for the regimeα ∼ O(M) in section 3 will be
helpful, where many equations and properties also hold for binary weights. The reduction
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to the NRF case can also be made easily. The 1RSB solution also exists in this case. This
study is now in progress.
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Appendix. Asymptotic expansion in the limit of largeM

We use the following expressions to write equations in simpler forms

Q∗0 = 1− q0− (v′1− v′0) (A1)

Q′0 =
q0− v′0

1− q0− (v′1− v′0)
(A2)

Q0 = q0− v0

1− q0− (v′1− v′0)
(A3)

W =
[

1− q0− (v1− v0)

1− q0− (v′1− v′0)
] 1

2

(A4)

c̃ = c1− q0− (v′1− v′0)
1+ (c/Md) (A5)

t̄0j = t0j + i√
M

√
Q0

Q′0
z0. (A6)

Note thatQ∗0→ 0,Q′0→∞, Q0→∞, W → 1 andc̃→∞. In the following calculations
we assumecQ∗0 →∞, which can be justified self-consistently from the final result, given
in (31) and (35). ThenA in (24) is given by

A =
∑
{τj=±1}

2

(∑
j

τj

)∫
Du

∏
j

H

[√
cQ∗0
m
τjηj

(
t1j + 1√

M
Wz1ηj +

√
Q′0t̄0j ηj

)

+ i√
M

√
1− c

d
τju

]
. (A7)

Expanding up to the order 1/
√
c, Gr can be written as

mGr =
∫
Dz0

∫ ∏
j

Dt0j ln(I (0)m + I (1)m ). (A8)

I (0)m is the dominant term, which is obtained from a partial sum in (24) over theηj and
the τj where

∑
j ηj < 0 andηj = −τj for all j . ThenAm → 1 asm → 0 andc → ∞.

I (1)m is of the first order in 1/
√
c. It can be obtained from another partial sum where

each term is given by the condition thatηj = τj = 1 for one j and
∑
j ′(6=j) ηj ′ = 0,

ηj ′ = −τj ′ for j ′ 6= j . In this case,Am → exp(−c̃t21j /2), where the change of variables

t1j + (i/
√
M)Wz1ηj +

√
Q′0t̄0j ηj → t1j is made. Thenf (0) andf (1) in (27) are given by

f (0) =
∫
Dz0

∫ ∏
j

Dt0j ln(I (0)m ) (A9)
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f (1) =
∫
Dz0

∫ ∏
j

Dt0j
I (1)m

I
(0)
m

. (A10)

Using the integral representation used in [10] for2(−∑j ηj ), I
(0)
m can be given by

I (0)m =
∫ ∞

0

dλ

2π

∫
dx eiλx

∫
Dz1 e

1
2W

2z2
1

(∏
j

∑
ηj

eixηj

∫ ∞
−
√
Q′0t̄0j ηj

Dt1j e(i/
√
M)Wz1ηj t1j

)
.

(A11)

Following [10], the integrand is observed to be dominant nearx = 0, so that we expand it
up to the second order inx, assumingx ∼ O(1/√M). The integrations over thet1j can
also be carried out by the cumulant expansion up to the order 1/M∫ ∞
x

Dt e−(i/
√
M)Wz1t = H(x) exp

[
− i√

M
Wz1

∫∞
x
Dt t

H(x)

−W
2z2

1

2M

(∫∞
x
Dt t2

H(x)
−
(∫∞

x
Dt t

H(x)

)2)]
. (A12)

As a result, we obtain

I (0)m = H
[

T√
1−G− 4W 2L2

]
. (A13)

In this equation

T = 1√
M

∑
j

(1− 2H(
√
Q′0t̄0j ))

G = 1

M

∑
j

(1− 2H(
√
Q′0t̄0j ))

2

L = 1

M

∑
j

H ′(
√
Q′0t̄0j ) (A14)

whereH ′(t) = −e−t
2/2/
√

2π . Thenf (0) can be obtained by the cumulant expansion for
the integrations over thet0j , equivalent to the central limit theorem. Integratingz0 out, we
have

f (0) =
∫

dT dT̂

2π
eiT T̂−(T̂ 2/2)(G−(2/π)(Q0/(1+Q′0)) lnH

[
T√

1−G− 4W 2L2

]
. (A15)

HereG andL are replaced by averaged quantities

G = 〈(1− 2H(
√
Q′0t))

2〉 = 2

π
sin−1

(
Q′0

1+Q′0

)
L = 〈H ′(

√
Q′0t)〉 = −

1√
2π

1√
1+Q′0

(A16)

where〈· · ·〉 = ∫ Dt . . .. Integrating overT̂ and changing the integral variable, we obtain

f (0) =
∫
Dt lnH

[[
(2/π) sin−1(Q′0/(1+Q′0))− (2/π)(Q0/(1+Q′0))

1− (2/π) sin−1(Q′0/(1+Q′0))− (2/π)(W 2/(1+Q′0))

] 1
2

t

]
. (A17)
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On the other hand,I (1)m can be written by

I (1)m =
∑
j

∑
{ηj ′ ,j ′ 6=j}

δ

(∑
j ′
ηj ′ , 0

)∫
Dz1

∫ ∞
0

∏
j ′′

dt1j ′′√
2π

× exp

[
− 1

2
c̃t21j −

1

2

∑
j ′′(6=j)

(
t1j ′′ − i√

M
Wz1ηj ′′ −

√
Q′0t̄0j ′′ηj ′′

)2]
(A18)

whereδ(a, b) denotes the usual Kronecker delta function,δab. Using (A13),f (1) can be
given by

f (1) = M
(

M − 1
((M − 1)/2)

)∫
Dz0

∫ ∏
j

Dt0jH
−1

[
T√

1−G− 4W 2L2

]
Ĩ (1)m (A19)

where

Ĩ (1)m '
1

2
√
c̃

∫
Dz1 e(W

2/2)z2
1− 1

2Q
′
0t̄

2
0M−(i/

√
M)Wz1

√
Q′0t̄0M

((M−1)/2)∏
j=1

(∫ ∞
√
Q′0t̄0j

Dt e−(i/
√
M)Wz1t

)

×
M−1∏

j=((M+1)/2)

(∫ ∞
−
√
Q′0t̄0j

Dte(i/
√
M)Wz1t

)
. (A20)

Using (A12),f (1) can be written by

f (1) = M

2

(
M − 1

((M − 1)/2)

)
1√
c̃

1√
1+Q′0

∫
Dz0 e(Q0/2Q′0)z

2
0

∫
Dz1

∫
dT dT̂

2π

∫
dG dĜ

2π

×
∫

dL dL̂

2π

∫
dD dD̂

2π

∫
dE dÊ

2π
eiT̃ T+iG̃G+iL̃L+iD̃D+iẼE−iWz1D−(W 2/2)Ez2

1

×H−1

[
T√

1−G− 4W 2L2

] ((M−1)/2)∏
j=1

(∫
Dt H(

√
Q′0t) eS+

)

×
M−1∏

j=((M+1)/2)

(∫
Dt H(−

√
Q′0t)e

S−

)
(A21)

where

S± = −i
T̂√
M
(1− 2H(

√
Q′0t))− i

Ĝ

M
(1− 2H(

√
Q′0t))

2− i
L̂

M
H ′(

√
Q′0t)

±i
z0√
M

√
Q0

Q′0
t ∓ i

D̂√
M

(1/
√

2π) e−(Q
′
0/2)t

2

H(±√Q′0t)
∓ Ê
M

(
(1/
√

2π)
√
Q′0t e−(Q

′
0/2)t

2

H(±√Q′0t) ∓
(
(1/
√

2π) e−(Q
′
0/2)t

2

H(±√Q′0t)
)2)

. (A22)

We use the following cumulant expansion:∫
Dt H(

√
Q′0t) eS ' 1

2
exp

(
2
∫
Dt HS + 1

2

(
2
∫
Dt HS2−

(
2
∫
Dt HS

)2))
(A23)

where
∫
Dt H(

√
Q′0t) = 1/2 is used. The remaining calculation off (1) is involved, but

can be done by the successive Gaussian integrations. Some important integrals involving
H(
√
Q′0t) are as follows: 2

∫
Dt H(1−2H)2 = ∫ Dt(1−2H)2 = G, 2

∫
Dt H(1−2H) =
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−G,
∫
Dt HH ′ = L, 2

∫
Dt Ht2 = 1, 2

∫
Dt Ht = −2

∫
Dt H(1 − 2H)t = 2

√
Q′0L,

whereG andL are given in (A16). Using the Stirling formula to find(
M − 1

((M − 1)/2)

)
' 2M/

√
2πM

we finally obtain

f (1) =
[

M

2πc̃(1+Q′0)
] 1

2

[(1+ 2W 2E)(1−G)− 4W 2L]−
1
2

∫
dt√
2π

×H−1

[ [
G− 4L2Q0

1−G− 4W 2L2

] 1
2

t

]
× exp

[
−1

2

(1− 4L2B)(1+ 2W 2E)− 4W 2L2

(1+ 2W 2E)(1−G)− 4W 2L2
t2
]

(A24)

whereE = π−1
∫
Dt e−Q

′
0t

2
H−1(

√
Q′0t).

References

[1] Amit D J, Guntfreund H and Sompolinsky H 1985Phys. Rev.A 32 1007
Amit D J, Guntfreund H and Sompolinsky H 1985Phys. Rev. Lett.55 1530

[2] Sherrington D and Kirkpatrick S 1975Phys. Rev. Lett.35 1792
[3] Parisi G 1980J. Phys. A: Math. Gen.13 L115

Parisi G 1980J. Phys. A: Math. Gen.13 1101
Parisi G 1980J. Phys. A: Math. Gen.13 1807

[4] Gardner E 1987Europhys. Lett.4 481
Gardener E 1988J. Phys. A: Math. Gen.21 257
Gardner E and Derrida B 1988J. Phys. A: Math. Gen.21 271

[5] Cover T M 1965 IEEE Trans. Electron. Comput.14 326
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